Página Inicial CNEA Laboratorio TANDAR Página Inicial TANDAR Historia del acelerador TANDAR Web interno Web mail
Inicio » Actividades I+D > Publicaciones 2010 > Polymer tribology by combining ion-impla...
artículo con referato
"Polymer tribology by combining ion-implantation and radionuclide tracing"
H. Timmers, L.G. Gladkis, J.A. Warner, A.P. Byrne, M.F. del Grosso, C.R. Arbeitman, G. García Bermúdez, T. Geruschke and R. Vianden
Nucl. Instrum. Meth. B 268(11-12) (2010) 2119-2123
Abstract
Radionuclide tracers were ion implanted with three different techniques into the ultra-high molecular weight polyethylene polymer. Tracer nuclei of 7Be were produced with inverse kinematics via the reaction p(7Li,7Be)n and caught by polymer samples at a forward scattering angle with a maximum implantation energy of 16 MeV. For the first time, 97Ru, 100Pd, and, independently, 111In have been used as radionuclide tracers in ultra-high molecular weight polyethylene. 97Ru and 100Pd were recoil-implanted following the fusion evaporation reactions 92Zr(12C,α3n) 97Ru and 92Zr(12C,4n)100Pd with a maximum implantation energy of 8 MeV. 111In ions were produced in an ion source, mass-separated and implanted at 160 keV. The tribology of implanted polymer samples was studied by tracing the radionuclide during mechanical wear. Uni-directional and bi-directional sliding apparatus with stainless steel actuators were used. Results suggest a debris exchange process as the characteristic feature of the wear-in phase. This process can establish the steady state required for a subsequently constant wear rate in agreement with Archard's equation. The nano-scale implantation of mass-separated 111In appears best suited to the study of non-linear tribological processes during wear-in. Such non-linear processes may be expected to be important in micro- and nanomachines.
SUBGERENCIA TECNOLOGIA Y APLICACIONES DE ACELERADORES
Contacto
Av. Gral Paz y Constituyentes, San Martín, Pcia. de Buenos Aires, Argentina
Tel: (54-11) 6772-7007 - Fax: (54-11) 6772-7121