Página Inicial CNEA Laboratorio TANDAR Página Inicial TANDAR Historia del acelerador TANDAR Web interno Web mail
Inicio » Actividades I+D > Publicaciones 2012 > 1/2-spin Anderson model out of equilibri...
acta de conferencia
"1/2-spin Anderson model out of equilibrium: conductance and Kondo temperature"
L. Tosi, P. Roura-Bas, A.M. Llois and A.A. Aligia
Proc. of the "Frontiers of Condensed Matter V" (FCM 2010), Buenos Aires, Argentina, December 6-10, 2010. Ed. A.M. Llois and J.Guevara
Physica B Condens. Matter. 407(16) (2012) 3263-3266
We calculate the conductance through a quantum dot weakly coupled to metallic contacts by means of the Keldysh out of equilibrium formalism. We model the quantum dot with the SU(2) Anderson model and consider the limit of infinite Coulomb repulsion. The interacting system is solved with the numerical diagrammatic Non-Crossing Approximation (NCA) and the conductance is obtained as a function of temperature and gate voltage from differential conductance (dI/dV) curves. We discuss the results in comparison with those from the linear response approach which can be performed directly in equilibrium conditions. Comparison shows that out of equilibrium results are in good agreement with the ones from linear response supporting reliability of the method employed. The last discussion becomes relevant when dealing with general transport models through interacting regions. We also analyze the evolution of conductance vs gate voltage with temperature. While at high temperatures the conductance is peaked, when the Fermi energy coincides with the localized level it presents a plateau at low temperatures as a consequence of the Kondo effect. We discuss different ways to determine Kondo's temperature.
Av. Gral Paz y Constituyentes, San Martín, Pcia. de Buenos Aires, Argentina
Tel: (54-11) 6772-7007 - Fax: (54-11) 6772-7121