Página Inicial CNEA Laboratorio TANDAR Página Inicial TANDAR Historia del acelerador TANDAR Web interno Web mail
Inicio » Actividades I+D > Publicaciones 2013 > Semiclassical propagation up to the Heis...
artículo con referato
"Semiclassical propagation up to the Heisenberg time"
Eduardo G. Vergini
Europhys. Lett. 103(2) (2013) 20003/p1-p6
By using a quantum Hamiltonian system with classically chaotic dynamics, we demonstrate that it is possible to propagate waves, at a semiclassical level, for extremely long times of the order of the Heisenberg time. We achieve this unexpected result with a new formula that evaluates the autocorrelation function of a quantum state living in the neighborhood of a short periodic orbit, the so-called resonance, in terms of the set of homoclinic orbits; this set is given by the intersection of the stable and unstable manifolds of the periodic orbit. Here we study the manifolds of the shortest periodic orbit of the hyperbola billiard (a chaotic Hamiltonian system), finding a surprisingly simple tree structure. Then, we compute a complete set consisting of the first 18 146 homoclinic orbits, and by using this data we analyze the convergence of the new formula. Finally, we compare the quantum and semiclassical autocorrelation of resonances up to the Heisenberg time, obtaining a relative error O(h) in correspondence with semiclassical predictions.
Av. Gral Paz y Constituyentes, San Martín, Pcia. de Buenos Aires, Argentina
Tel: (54-11) 6772-7007 - Fax: (54-11) 6772-7121