Página Inicial CNEA Laboratorio TANDAR Página Inicial TANDAR Historia del acelerador TANDAR Web interno Web mail
Inicio » Actividades I+D > Publicaciones 2018 > Bimodal Dielectric Breakdown in Electron...
artículo con referato
"Bimodal Dielectric Breakdown in Electronic Devices Using Chemical Vapor Deposited Hexagonal Boron Nitride as Dielectric"
Felix Palumbo, Xianhu Liang, Bin Yuan, Yuanyuan Shi, Fei Hui, Marco A. Villena and Mario Lanza
Adv. Electron. Mater. 4(3) (2018) 1700506/1-8
Abstract
Multilayer hexagonal boron nitride (h-BN) is an insulating 2D material that shows good interaction with graphene and MoS2, and it is considered a very promising dielectric for future 2D-materials-based electronic devices. Previous studies analyzed the dielectric properties of thick (>10 nm) mechanically exfoliated h-BN nanoflakes (diameter < 20 µm) via conductive atomic force microscopy and applying very high voltages (>10 V); however, these methods are not scalable. In this work, the first device-level reliability study of large area h-BN dielectric stacks (grown via chemical vapor deposition) is presented, and the complete dielectric breakdown (BD) process is described. The experiments and calculations indicate that the BD process in metal/h-BN/metal devices starts with a progressive current increase across the h-BN stack until current densities up to 0.1 A cm-2 are reached. After that, the currents increase by sudden steps, which can be large (>1 order of magnitude, related to the BD of one/few h-BN layers) or small (<1 order of magnitude, related to the lateral propagation of the BD). The bimodal BD process of h-BN here presented (which cannot be detected via conductive atomic force microscopy) is essential to understand the reliability of 2D-material-based electronic devices using h-BN as dielectric.
DEPARTAMENTO FISICA DE LA MATERIA CONDENSADA
Contacto
Av. Gral Paz y Constituyentes, San Martín, Pcia. de Buenos Aires, Argentina
Tel: (54-11) 6772-7007 - Fax: (54-11) 6772-7121