Página Inicial CNEA Laboratorio TANDAR Página Inicial TANDAR Historia del acelerador TANDAR Web interno Web mail
Inicio » Actividades I+D > Publicaciones 2018 > The Atomic Layer Deposition Technique fo...
capítulo de libro
"The Atomic Layer Deposition Technique for the Fabrication of Memristive Devices: Impact of the Precursor on Pre-deposited Stack Materials"
Cynthia P. Quinteros, Alex Hardtdegen, Mariano Barella, Federico Golmar, Félix Palumbo, Javier Curiale, Susanne Hoffmann-Eifert and Pablo Levy
Capítulo 1 del libro "New Uses of Micro and Nanomaterials", Edited by Marcelo Rubén Pagnola, Co-editors: Jairo Useche Vivero and Andres Guillermo Marrugo, IntechOpen Limited, London, United Kingdom (2018)
ISBN: 978-1-78984-174-9 (ebook)
978-1-78984-173-2 (print)
Abstract
Atomic layer deposition (ALD) is a standard technique employed to grow thin-film oxides for a variety of applications. We describe the technique and demonstrate its use for obtaining memristive devices. The metal/insulator/metal stack is fabricated by means of ALD-grown HfO2, deposited on top of a highly doped Si substrate with an SiO2 film and a Ti electrode. Enhanced device capabilities (forming free, self-limiting current, non-crossing hysteretic current-voltage features) are presented and discussed. Careful analysis of the stack structure by means of X-ray reflectometry, atomic force microscopy, and secondary ion mass spectroscopy revealed a modification of the device stack from the intended sequence, HfO2/Ti/SiO2/Si. Analytical studies unravel an oxidation of the Ti layer which is addressed for the use of the ozone precursor in the HfO2 ALD process. A new deposition process and the model deduced from impedance measurements support our hypothesis: the role played by ozone on the previously deposited Ti layer is found to determine the overall features of the device. Besides, these ALD-tailored multifunctional devices exhibit rectification capability and long enough retention time to deserve their use as memory cells in a crossbar architecture and multibit approach, envisaging other potential applications.
DEPARTAMENTO FISICA DE LA MATERIA CONDENSADA
Contacto
Av. Gral Paz y Constituyentes, San Martín, Pcia. de Buenos Aires, Argentina
Tel: (54-11) 6772-7007 - Fax: (54-11) 6772-7121